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The ground-state fidelity per lattice site is shown to be able to detect quantum phase transitions for the
Kitaev model on the honeycomb lattice, a prototypical example of quantum lattice systems with topological
order. It is found that, in the thermodynamic limit, the ground-state fidelity per lattice site is nonanalytic at the
phase boundaries; the second-order derivative of its logarithmic function with respect to a control parameter
describing the interaction between neighboring spins is divergent. A finite-size scaling analysis is performed,
which allows us to extract the correlation length critical exponent from the scaling behaviors of a part of the
ground-state fidelity per lattice site.
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I. INTRODUCTION

With the advent of its discovery in the fractional quan-
tum-Hall effect,1 topological order emerges as a new para-
digm in the study of quantum phase transitions �QPTs�.2
Subsequent investigations show that topological order occurs
in various strongly correlated lattice systems undergoing
QPTs. A characteristic feature of quantum systems with to-
pological order is their insensitivity to any local pertur-
bations.3 Such an essential difference between topological
and symmetry-breaking orders invalidates the usual tools
used to describe a symmetry-breaking order, such as long-
range correlations, broken symmetries, and local order
parameters.4,5

Recently, much attention has been paid to an exactly solv-
able spin-1/2 model on a honeycomb lattice introduced by
Kitaev5 for fault-tolerant topological quantum computation.6

The model describes a set of spins located at the vertices of
a two-dimensional honeycomb lattice, subject to a spatially
anisotropic interaction between neighboring spins. It has
been shown that it carries excitations with both Abelian and
non-Abelian braiding statistics, which do not obey ordinary
bosonic and fermionic statistics but are anions with more
intricate statistical behavior.7 An experimentally feasible re-
alization of the model in a system of cold atoms on an opti-
cal lattice has been addressed8 �see also Refs. 9 and 10� with
the expectation to perform quantum computation by utilizing
braiding of collective excitations implanted in topologically
ordered coherent quantum many-body states.

In addition, a viable scheme to determine the ground-state
phase diagram of a quantum lattice system without prior
knowledge of order parameters was proposed in Refs. 11–14.
This was achieved by studying the singularities in the
ground-state fidelity per lattice site.15 In fact, the ground-
state fidelity may be interpreted as the partition function of a
classical statistical vertex model with the same lattice geom-
etry by using the tensor-network representations of quantum
many-body wave functions.12 Therefore, the fidelity per lat-
tice site is nothing but the partition function per site in the
classical statistical vertex lattice model.16 This justifies why
QPTs may be detected as singularities in the fidelity per lat-
tice site as a function of the control parameters �see also
Refs. 17 and 18 for the connection between the fidelity and

QPTs�. Therefore, an intriguing question is to see if the fi-
delity approach captures the physics underlying QPTs in
quantum lattice systems with topological order.

The purpose of this paper is to show that the ground-state
fidelity per lattice site is able to detect QPTs for the Kitaev
model on the honeycomb lattice, a prototypical example of
quantum lattice systems with topological order. First, we de-
rive the ground-state fidelity per lattice site between different
ground states from the exact solution of the Kitaev model on
the honeycomb lattice. This is achieved by exploiting the fact
that the original spin model on the honeycomb lattice is re-
phrased as a p-wave BCS model with a site-dependent
chemical potential for spinless fermions on a square lattice19

�see also Refs. 20–23�. The ground state of the latter is a
BCS-type state, as a consequence of the Jordan-Wigner, Fou-
rier, and Bogoliubov transformations. Second, the phase
boundaries separating the gapless phase from different gap-
ful phases are reproduced by investigating the singularities in
the fidelity per lattice site. It is found that, in the thermody-
namic limit, the ground-state fidelity per site is nonanalytic
at the phase boundaries. That is, the second-order derivative
of its logarithmic function with respect to a given control
parameter is divergent as the phase boundaries are crossed.
Third, we perform a finite-size scaling analysis for the Kitaev
model, aiming at extracting the correlation length critical ex-
ponent from the scaling behaviors of the ground-state fidelity
per site. Our exact results offer a benchmark to investigate
QPTs for two-dimensional quantum lattice systems with to-
pological order numerically in the context of tensor-network
representations.24–27

II. KITAEV MODEL ON A HONEYCOMB LATTICE

Consider a spin 1/2 model on a honeycomb lattice with
the Hamiltonian1

H = − Jx �
x-bonds

�i
x� j

x − Jy �
y-bonds

�i
y� j

y − Jz �
z-bonds

�i
z� j

z, �1�

where J� are interaction �control� parameters and � j
� are the

Pauli matrices at the site j with �=x, y, and z. The Hamil-
tonian �1� may be fermionized by performing the Jordan-
Wigner transformation19–22 from the Pauli spin matrices � j

�

to the spinless-fermion operators cj
† and cj. This one-

PHYSICAL REVIEW B 80, 014403 �2009�

1098-0121/2009/80�1�/014403�6� ©2009 The American Physical Society014403-1

http://dx.doi.org/10.1103/PhysRevB.80.014403


dimensional fermionization is realized by deforming the hex-
agonal lattice into a brick-wall lattice which is topologically
equivalent to the original lattice. Following Chen and
Nussinov,19 we introduce the Majorana fermions: Aw�b�
= �cw�b�−cw�b�

† � / i and Bw�b�=cw�b�+cw�b�
† . Then the Hamil-

tonian �1� becomes

H = − iJx �
x-bonds

AwAb + iJy �
y-bonds

AbAw − iJz �
z-bonds

�rAbAw,

�2�

where the subscripts w and b denote two sublattices in the
brick-wall lattice, and �r� iBbBw along the z bond is
conserved,20 with r being the coordinate of the midpoint of
the bond connecting the b-type and w-type sites. This in turn
is equivalent to a model of spinless fermions on a square
lattice with a site-dependent chemical potential

H = Jx�
r

�dr
† + dr��dr+êx

† − dr+êx
� + Jy�

r

�dr
† + dr��dr+êy

† − dr+êy
�

+ Jz�
r

�r�2dr
†dr − 1� . �3�

Here d= �Aw+ iAb� /2 and d†= �Aw− iAb� /2, and the unit vec-
tor êx and êy connects two z bonds and crosses x and y bonds,
respectively. For large enough systems, the ground-state con-
figurations are bulk vortex-free configurations,1,21 which im-
plies �r=1 for all r. Therefore, the ground state may be
obtained by performing a Fourier transformation. Up to an
unimportant additive constant, Hamiltonian �3� in the vortex-
free configuration now reads as

Hg = �
k
��kdk

†dk + i
�k

2
�dk

†d−k
† − H.c.�� �4�

with �k=2Jz−2Jx cos kx−2Jy cos ky and �k=2Jx sin kx
+2Jy sin ky. Hamiltonian �4� is a p-wave-type BCS pairing
model and can be diagonalized by means of the Bogoliubov
transformation. It yields that the BCS-type ground state is
�g�=	k�uk+vkdk

†d−k
† ��0�, where �uk�2=1 /2�1+�k /Ek� and

�vk�2=1 /2�1−�k /Ek� with the quasiparticle excitation energy
Ek=
�k

2�k
2.19 We choose the phase convention uk

=
�Ek+�k� /2Ek and vk= i�k /
2Ek
2+2Ek�k for later uses.

III. GROUND-STATE FIDELITY PER
LATTICE SITE

Consider two ground states �g� and �g�� corresponding to
different values of the control parameters J� ��Jx ,Jy ,Jz� and
J����Jx� ,Jy� ,Jz��, respectively. The fidelity F�J� ;J�����g� �g�
asymptotically scales as F�J� ;J����d�J� ;J���N, with N as the
total number of sites in the lattice. Here d�J� ;J��� is the
ground-state fidelity per lattice site, introduced in Refs. 11
and 12. Although F�J� ;J��� becomes trivially zero for continu-
ous QPTs, the fidelity per lattice site is well defined in the
thermodynamic limit

d�J� ;J��� = lim
N→�

F1/N�J� ;J��� . �5�

It satisfies the properties inherited from the fidelity F�J� ;J���:
�i� normalization d�J� ;J��=1, �ii� symmetry d�J� ;J���=d�J�� ;J��,
and �iii� range 0�d�J� ;J����1.

For the Kitaev model on the honeycomb lattice, the loga-
rithmic function of the fidelity per site, ln dh�J� ;J���, is half of
the logarithmic function of the fidelity per site, ln dsq�J� ;J���,
for the model of spinless fermions on a square lattice. This
results from the fact that the number of sites in the honey-
comb lattice doubles that of sites in the square lattice. The
BCS-type ground state �g� yields the ground-state fidelity per
lattice site for the spinless-fermion model on the square lat-
tice

ln dsq�J� ;J��� =
1

�2��2

−�

�

dkx

0

�

dky ln�uk
�uk� + vk

�vk�� , �6�

where uk and vk depend on J�, whereas uk� and vk� depend on
J��. Here we emphasize that although the information about
the topological nature of the Kitaev model is lost in the
spinless-fermion representation, the unitary equivalence be-
tween the two representations preserves the fidelity. Since
the extra prefactor does not affect the singularities in
ln dh�J� ;J��� and ln dsq�J� ;J���, hereafter we focus on
ln dsq�J� ;J���.

For a finite-size system, Hamiltonian �4�, resulted from
the Jordan-Wigner, Fourier, and Bogoliubov transformations,
depends on boundary conditions imposed on the original
spin model �Eq. �1��. In contrast to open boundary condi-
tions, there is an extra boundary term if one adopts the peri-
odic boundary conditions. However, such a boundary term
does not contribute to the fidelity per site although it carries
the topological dependence of the ground-state degeneracy.19

From now on, we are only concerned with the fermion model
on a square lattice with the periodic boundary conditions
�i.e., a torus� to analyze the ground-state fidelity per lattice
site for finite-size systems,28 from which it is sufficient to
extract the bulk behaviors of the model. As such, for a sys-
tem on a torus with an odd linear size L, the logarithmic
function of the ground-state fidelity per lattice site,
ln dsq�J� ;J���, takes the form

ln dsq�J� ;J��� =
1

L2 �
kx,ky

ln�uk
�uk� + vk

�vk�� . �7�

Here kx and ky take values from the set: 2�m /L�m=−�L
−1� /2, . . . , �L−1� /2� and the double summation is over all kx
and the positive values of ky.

A. Ground-state phase diagram and singularities in the
ground-state fidelity per lattice site

Now we turn to the ground-state phase diagram. This fol-
lows from the singularities in ln d�J� ;J���. From now on, the
subscript “sq” has been omitted for brevity. One may show
that ln d�J� ;J��� in Eq. �6� and the first-order derivative with
respect to a control parameter is continuous but the second-
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order derivative diverges when the phase boundaries deter-
mined by �Jx�= �Jy�+ �Jz�, �Jy�= �Jz�+ �Jx�, and �Jz�= �Jx�+ �Jy� are
crossed. This is consistent with the original analysis by
Kitaev1 �see also Refs. 19–21�. Indeed, the Kitaev model is
symmetric in Jx, Jy, and Jz. Therefore, this should be re-
flected in all physical quantities including the fidelity per
lattice site. However, the mapping from the Kitaev model on
the honeycomb lattice to the spinless-fermion model on the
square lattice makes this fact a bit obscure. To check the
symmetry, we compute the logarithm of the ground-state fi-
delity per lattice site for two cases: �i� Jy=Jy�=Jz=Jz�
=1 /2 as a function of Jx ,Jx� and �ii� Jx=Jx�=Jy=Jy�
=1 /2 as a function of Jz ,Jz�. In Fig. 1�a�, we plot ln d�J� ;J���
as a function of Jx and Jx� for Jy =Jz=1 /2 and Jy�=Jz�=1 /2. It
exhibits a pinch point at �Jxc ,Jxc�= �1,1�. In Fig. 1�b�, we
plot ln d�J� ,J��� as a function of Jz and Jz� for fixed Jx=Jx�
=Jy =Jy�=1 /2. It exhibits a pinch point at �Jzc ,Jzc�= �1,1�.
Here by a pinch point we mean an intersection of two sin-
gular lines Jx=Jxc and Jx�=Jxc. Therefore, the drastic change
in the ground-state many-body wave functions at a critical
point is reflected as the singularities in ln d�J� ;J���. We see
that ln d�J� ;J��� is identical for both cases, indicating that the
symmetry is captured by the ground-state fidelity per lattice
site d�J� ,J���.

B. Singularities in a part of the ground-state fidelity per
lattice site

In fact, ln d�J� ;J��� consists of two parts: ln d++�J� ;J��� and
ln d−+�J� ;J���. The former is the contribution from the positive
values of kx and ky, whereas the latter is the contribution
from the negative values of kx and the positive values of ky.
Since the singularities in ln d�J� ;J��� come from both parts,
we restrict ourselves to consider ln d++�J� ;J���. In Fig. 2�a�,
we plot ln d++�J� ;J��� as a function of Jx and Jx� for Jy =Jz
=1 /2 and Jy�=Jz�=1 /2. It is seen that a pinch point occurs at
�Jxc ,Jxc�= �1,1�. Similarly, the numerical results are plotted
in Fig. 2�b� for ln d++�J� ,J��� as a function of Jz and Jz� for
fixed Jx=Jx�=Jy =Jy�=1 /2 with a pinch point at �Jzc ,Jzc�
= �1,1�. Not surprisingly, the symmetry mentioned above for
the Kitaev model with respect to Jx, Jy, and Jz is lost for
ln d++�J� ;J���, although it is valid for ln d�J� ;J���. The reason
why we investigate ln d++�J� ;J��� is that it considerably sim-
plifies the finite-size scaling analysis without loss of any
physics. This is because there is only an isolated singular
point �0,0� in the momentum space �kx ,ky� for ln d++�J� ;J���.
Instead, a singular line in the momentum space �kx ,ky� oc-
curs for ln dsq�J� ;J���.

(b)(a)

FIG. 1. �Color online� �a� The logarithm of the fidelity per lattice site, ln d�J� ,J���, is shown as a function of Jx and Jx� for fixed Jy =Jy�
=Jz=Jz�=1 /2. It exhibits a pinch point at �Jxc ,Jxc�= �1,1�. �b� The logarithm of the fidelity per lattice site, ln d�J� ,J���, is shown as a function
of Jz and Jz� for fixed Jx=Jx�=Jy =Jy�=1 /2. It exhibits a pinch point at �Jzc ,Jzc�= �1,1�. We see that they are identical. That is, the ground state
fidelity per lattice site, d�J� ,J���, captures the fact that the Kitaev model is symmetric in Jx, Jy, and Jz. Here, a pinch point is defined as an
intersection of two singular lines.

(b)(a)

FIG. 2. �Color online� �a� A part of the logarithm of the fidelity per lattice site, ln d++�J� ,J���, is shown as a function of Jx and Jx� for fixed
Jy =Jy�=Jz=Jz�=1 /2. It exhibits a pinch point at �Jxc ,Jxc�= �1,1�. �b� �A part� of the logarithm of the fidelity per lattice site, ln d++�J� ,J���, is
shown as a function of Jz and Jz� for fixed Jx=Jx�=Jy =Jy�=1 /2. It exhibits a pinch point at �Jzc ,Jzc�= �1,1�.
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More precisely, for any fixed J��, ln d++�J� ;J��� is logarith-
mically divergent when J�� is varied such that a critical point
is crossed. Suppose Jy and Jz are fixed and only Jx is a
control parameter that varies. Then we have

�2 ln d++�J�,J���
�Jx

2 = k1 ln�Jx − Jxc� + const, �8�

where k1 is a nonuniversal prefactor that depends on Jy, Jz,
and J��, and Jxc is the critical value of Jx for fixed Jy and Jz.
The numerical results are plotted in Fig. 3�a� for Jy =Jz
=1 /2 and Jxc=1. The least square fit yields k1�0.02360,
which is close to the analytical result: k1=1 / �4�2�. We stress
that an estimation of k1 is getting closer to the analytical
prediction if the fitting interval gets smaller. Similarly, we
have presented numerics in Fig. 3�b� for the second-order
derivative of ln d++�J� ;J��� with respect to Jz with Jz�=0.8 and
Jx=Jx�=Jy =Jy�=1 /2. It turns out that it diverges logarithmi-
cally in the same way as Eq. �8� with Jx replaced by Jz and
k1�0.04726. The analytical prediction is k1=1 / �2�2�.29

C. Finite-size scaling analysis

For a system of finite size N�L2 �with L the linear size�,
there is no divergence in the second-order derivative of
ln d++�J� ,J��� with respect to Jx since QPTs only occur in the

thermodynamic limit. Instead, as seen in Fig. 3�a�, some pro-
nounced dips occur at the so-called quasicritical points Jxm
with the dips values logarithmically diverging with increas-
ing linear size L

� �2 ln d++�J�,J���
�Jx

2 �
Jx=Jxm

= k2 ln L + const, �9�

where k2 is a nonuniversal prefactor k2, which takes the
value k2�−0.02312 for Jx�=0.8 and Jy =Jy�=Jz=Jz�=1 /2 �see
Fig. 4�a��. In addition, the pseudocritical point Jxm ap-
proaches the critical value as Jxm�1−3.96384L−1.062 45 �see
the inset in Fig. 4�a��. The scaling ansatz in the system ex-
hibiting logarithmic divergences requires that the absolute
value of the ratio k1 /k2 is the correlation length critical ex-
ponent 	. In this case, �k1 /k2��1.02076, very close to the
exact value 	=1. This is consistent with the fact that
the gap � for the Bogoliubov quasiparticle scales as �
�Jx−Jxc near the critical point Jxc. Similarly, a finite-size
scaling analysis is performed for ln d++�J� ,J��� with Jz�
=0.8 and Jx=Jx�=Jy =Jy�=1 /2. It yields k2�−0.04640 for
�2 ln d++�J� ,J��� /�Jx

2 �Jz=Jzm
�see Fig. 4�b�� and the pseudocriti-

cal point Jzm are plotted in the inset in Fig. 4�b�.
In order to address the scaling ansatz for a system ex-

hibiting logarithmic divergence,30 we take into account the
distance of the minimum of �Jx

2 ln d++�J� ,J��� from the crit-
ical point to investigate D�J� ,J����1−exp��Jx

2 ln d++�J� ,J���

FIG. 3. �Color online� �a� The second-order derivative of a part
of the logarithm of the fidelity per lattice site, ln d++�J� ,J���, with
respect to Jx diverges at the critical point in the thermodynamic
limit. However, it remains analytic for finite-size systems, although
more pronounced dips occur with increasing linear system size.
Here Jx�=0.8 and Jy =Jy�=Jz=Jz�=1 /2. �b� The second-order deriva-
tive of a part of the logarithm of the fidelity per lattice site,
ln d++�J� ,J���, with respect to Jz diverges at the critical point in the
thermodynamic limit. However, it remains analytic for finite-size
systems, although more pronounced dips occur with increasing lin-
ear system size. Here Jz�=0.8 and Jx=Jx�=Jy =Jy�=1 /2.

FIG. 4. �Color online� �a� Main: the dips values scale as ln L
with increasing linear size L for Jx�=0.8 and Jy =Jy�=Jz=Jz�=1 /2.
Inset: the positions of the dips, i.e., the quasicritical points, Jxm,
approach the critical point Jxc=1 with increasing linear size L. �b�
Main: the dips values scales as ln L with the linear size L for Jz�
=0.8 and Jx=Jx�=Jy =Jy�=1 /2. Inset: the positions of the dips, Jzm,
approach the critical point Jzc=1 with increasing linear size L.
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−�Jx

2 ln d++�J� ,J��� �Jx=Jxm
� as a function of L�Jx−Jxm� for dif-

ferent linear sizes L’s. The numerical results for the linear
size ranging from L=401 up to L=1401 are plotted in Fig.
5�a�. All the data for different L’s collapse onto a single
curve, indicating that the model is scale invariant, i.e., 
 /L
=
� /L�, and that the correlation length critical exponent 	
=1. The same conclusion can be drawn from Fig. 5�b�, where
the data collapsing is confirmed for 1−exp��Jz

2 ln d++�J� ,J���
−�Jz

2 ln d++�J� ,J��� �Jz=Jzm
�.

IV. SUMMARY

We have demonstrated that the ground-state fidelity per
lattice site is able to detect QPTs in the Kitaev model on the
honeycomb lattice. It is found that, in the thermodynamic
limit, the ground-state fidelity per lattice site is nonanalytic
at a critical point. A finite-size scaling analysis has also been
performed to extract the correlation length critical exponent
from the scaling behaviors of �a part of� the ground-state
fidelity per site. Our exact results offer a benchmark to nu-
merically investigate QPTs for two-dimensional quantum lat-
tice systems with topological order in the context of tensor-
network algorithms, which is currently under investigation.
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